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Free Group generated by {a, b}.

(symmetric) generating set S := {a, b, a−1, b−1}.
F2 := {x1x2 · · · xn : n ≥ 0, xi+1 ̸= x−1

i ∀1 ≤ i ≤ n}.
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Random walk on Free Group

b

a ↑ a

at Fab
+

That
r

• Let Y1,Y2, · · · ,Yn be sampled independently according to a distribution µ

on the alphabet {a, b, a−1, b−1, e}.
• Set Z0 = e and

Zn := Y1 · · ·Yn, n ≥ 1

We call (Zn)n≥ a (nearest neighbor) random walk on F2.

• µ is called symmetric if µ(x) = µ(x−1).
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Random walk on Z 2

If our symbol a, b satisfies an additional relation

ab = ba

Then use {a, b} to generate a group, we get Z2.
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Random Walk on Group

Assume that (Γ,S) is a group with generating set S .

Let Y1, · · · ,Yn be independently sampled according to certain probability

measure µ on S . Then

Zn = Y1 · · · ,Yn

defines a random walk on the group (Γ,S).

Figure 1: π1(Σ2), the fundamental group of the a genus-2 torus
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Comparing the examples

In the previous examples, the groups F2 and π1(Σ2) are similar, while Z2

are very different from them:

• The size of a ball of radius n is of order exp(Θ(n)) in F2 and π1(Σ2).

• Consider a simple random walk on F2 and π1(Σ2), and and denote

pn(u, v) its transition probability, then

∥P∥ = lim
n→∞

p2n(v , v)
1/2n < 1.

• The geodesic triangles in F2 and π1(Σ2) are thin:

Hyperbolic groups 81

Definition 2.1 Let ↵0,↵1,↵2 be the sides of a geodesic triangle T .
We say that T is �–thin if ↵i ✓ N�

�
↵i-1 [ ↵i+1

�
, where the indices

are taken mod (3).

 

in

Definition 2.2 A geodesic metric space is �–hyperbolic if there
exists � > 0 such that any geodesic triangle of X is �–thin. We say
that a metric space is hyperbolic if it is �–hyperbolic for some �.

Hyperbolic metric spaces have very surprising properties. For in-
stance, there are several chain of properties P1 ) P2 ) . . . ) Pn

such that all the opposite implications are false for general metric
spaces, but they turn out to hold in hyperbolic spaces. We will see
an example of this later, but the theme is that hyperbolic spaces are
rigid: as soon as the weaker property Pn is satisfied, the stronger P1

follows.
We start with a list of elementary examples and non-examples.

Example 2.3 The following spaces are hyperbolic.

1. Any bounded space (by taking � bigger than the diameter).

2. Any tree is 0–hyperbolic.

3. The hyperbolic plane H2 and, in general, the hyperbolic space Hn.

The following spaces are not hyperbolic.

1. The Euclidean space Rn for n > 2, as for any � there exists a
non �–thin triangle;

2. In general, any space that contains a quasi-isometrically embedded
copy of Rn for n > 2, for the same reason.

     
Thin and not thin triangles

The so called (non-elementary) hyperbolic group is a class of group that

generalizes F2 and π1(Σ2). 5



Branching random walk on group

A branching random walk (BRW) on a group Γ with a finite symmetric

generating set S is constructed as follows:

• Sample a Galton-Watson tree T with offspring distribution (pk)k≥0

and let r :=
∑

k≥1 kpk .

• Independently assign each non-root vertex u a random element

Yu ∈ S according to a symmetric probability measure µ on S ∪ {e}.
• Define V (u) := Yu1Yu2 · · ·Yun where (root, u1, · · · , un = u) is the

geodesic in T from root to u. Moreover set V (root) := identity in Γ.

Technical assumption:
∑

k e
skpk < ∞ for some s > 0.
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Double phase transition

BRWs on non-elementary hyperbolic groups (and generally, nonamenable

groups) exhibits a double phase transition that does not occur in the

corresponding processes on Euclidean spaces.

Benjamini–Peres’ 94 and Gantert–Müller’ 06: For a BRW(r , µ), let

R := ∥P∥−1 =
1

lim supn→∞ p2n(v , v)1/2n
> 1.

• If 0 ≤ r ≤ 1 then the process dies after finite time,

• If 1 < r ≤ R then does not visit any compact set infinitely often.

(Transient/weak survival regime)

• r > R the BRW visits every vertex infinitely often when it survives

forever. (recurrent/strong survival regime)

The ICM 2006 lecture by Lalley: The weak/strong survival transition on trees

and nonamenable graphs.
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The boundary of a free group

The free group Fd admits a natural boundary:

∂F := the collection of all geodesic rays starting from the root.

For x , y ∈ F̄ := F ∪ ∂F, the standard ultra-distance metric between x , y

is defined as

distF̄(x , y) := e−|x∧y |

Then one have dimH(∂Fd) = ln(2d − 1).

&

F Y

xay

X
dof(x ,y) =

= e
= (xxy)
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The limit set: Hausdorff dimension

For a BRW on F with mean r and step distribution µ, define the limit set

Λr := {x ∈ F : x is visited by the BRW}.

In the transient/weak survival regime, Λr is a (random) proper subset of ∂F.
Otherwise it is either empty or ∂F.

Liggett’96 and Hueter–Lalley’00

They obtained the Hausdorff dimension of the limit set Λr . Specifically,

for r ∈ (1,R],

dimH(Λr ) = lnG (r),

where G (r) is the growth rate of the trace of the BRW

G (r) := lim
n→∞

|{x ∈ F : |x | = n, x is visited by the BRW }| 1n a.s.

Moreover G(r) is the solution of the following equation Fa(r)
ρ+Fa(r)

+ Fb(r)
ρ+Fb(r)

= 1
2
with

Fa(r) :=
∑∞

n=1 P(Ta = n)rn and Ta is the first passage time of the RW.
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The limit set: Hausdorff dimension

Interesting phenomenon happens at critical case:

Hueter–Lalley’00: backscattering inequality

For r ∈ (1,R],

dimH(Λr ) ≤
1

2
dimH(∂F).

Above, the equality holds if and only if

r = R and µ is isotropic.

• How come 1
2 appears?
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BRW on hyperbolic groups

• For a hyperbolic group Γ, it has a natural boundary ∂Γ called

Gromov boundary, equipped with the visual metric.

• Thus limit set Λr is also well-defined for BRW on hyperbolic groups.

Sidoravicius–Wang–Xiang’23

Consider BRW on hyperbolic groups. For r ∈ (1,R),

dimH(Λr ) ∝ lnG (r),

and

dimH(Λr ) ≤
1

2
dimH(∂Γ).

Dussaule–Wang–Yang’25

For BRW on relative hyperbolic groups with r ∈ (1,R], the above holds.
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Monofractal v.s. Multifractal

Monofractal: The irregularity of the object is the same at every point.

An example of monofractal: standard Brownian motion.

Brownian motion is a monofractal because its behavior is (to first order

at least) described by a single fractal exponent 1/2.

One way to say this is

• Almost surely, BM is everywhere locally ( 12 − ϵ)- Hölder continuous;

and at every point, BM fails to be locally ( 12 + ϵ)-Hölder continuous.

• For every point t,

E[(B(t + ϵ)− B(t))q] ≍ ϵ
1
2 q
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Monofractal v.s. Multifractal

An example of multifractal: 2D Gaussian Free Field h.

A point z is called α-thick if

lim inf
ε→0

hε(z)

log(1/ε)
= α

where hϵ(z) represents the circle average of the field around z at radius ε.

Hu–Miller–Peres’10

Let Tα denote the set of α-thick points. Then almost surely, the

Hausdorff dimension dimH(Tα) satisfies

dimH(Tα) = 2− α2

2
, α ≤ 2

and Tα is almost surely empty if α > 2.
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Our results



Setup

We aim to further investigate the multifractal property of the limit set Λr .

We should first start from the simplest setting to see what we can get.

Then try to apply our argument to the general case.

In this talk, we focus exclusively on BRWs on free groups, which

are the simplest hyperbolic group.
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Rate of escape

Hutchcroft’20: Almost surely, for any ω ∈ Λr , there is unique genealogical line

t = (tn)n ∈ ∂T such that distF̄(V (tn), x) = 0.

• We use the rate of escape of the walk (V (tn))n≥1 to describe the

degree of singularity around the point ω = V (t) in the fractal Λr .

• For each α ∈ [0, 1], define

Λr (α) :=

{
ω ∈ ∂F : ∃t ∈ ∂T ,V (t) = ω s.t. lim

n→∞

|V (tn)|
n

= α

}
.

Then

Λr = Λno limits
r ∪

⋃

α∈[0,1]

Λr (α).

Question: Hausdorff dimension of Λr (α)?
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Rate function

• Let L∗ denote the rate function of the large deviation principle for the

sequence (|Zn|/n)n≥1, where (Zn)n≥1 denotes the RW with step

distribution µ on F.

• L∗ is convex on [0, 1] and attains its minimum L∗(cRW) = 0 at

CRW := lim
n→∞

|Zn|
n

.

• L∗(0) = lnR.

α

L∗

I−(r) I+(r)
0

ln r

lnR

CRW

ln r−I (α)
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Our results

Lai–M.–Wang’24+

Let r ∈ (1,R]. Almost surely, for any α ∈ [0, 1], Λr (α) is nonempty if

and only if L∗(α) ≤ ln r , and

dimH Λr (α) =
ln r − L∗(α)

α
.

Here, α = 0 is permissible only when r = R, in which case ln R−L∗(0)
0

should

be interpreted as limα↓0
L∗(0)−L∗(α)

α
= −(L∗)′(0).

α

L∗

I−(r) I+(r)
0

ln r

lnR

CRW

ln r−I (α)

17



An interesting corollary

Lai–M.–Wang’24+

Let r ∈ (1,R]. There exists unique α(r) ∈ [0,CRW) such that

dimH Λr = dimH Λr (α(r)).

α

L∗

I−(r) I+(r)α(r)
0

ln r

lnR

CRW

ln r−I (α)

α

L∗

CRW

lnR

α(R)=0

lnR−I (α)

Figure 2: Illustration for α(r) in subcritical case 1 < r < R (left) and critical

case r = R (right).
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Beyond multifractal analysis

For 0 ≤ α ≤ β ≤ 1, define

Λr (α, β) :=

{
ω ∈ ∂Γ : ∃t ∈ ∂T ,V (t) = ω s.t.

lim
n→∞

|V (tn)|
n

= α, lim
n→∞

|V (tn)|
n

= β

}
.

Then we have the decomposition

Λr := ∪α≤βΛr (α, β)
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Isotropic case

Our second result concerns the Hausdorff dimension of each sub-fractal

Λr (α, β).

Lai–M.–Wang’24+

Assume that µ is isotropic (i.e., µ(a) = µ(b) = 1−µ(e)
4 ), Let r ∈ (1,R].

Almost surely, for any [α, β] ⊂ [0, 1], Λr (α, β) is nonempty if and only

if [α, β] ⊂ I (r), and

dimH Λr (α, β) = min
q∈{α,β}

ln r − L∗(q)

q
.
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Anisotropic case

For anisotropic step distribution µ (that is µ(a) ̸= µ(b)), we only

obtained partial results:

Lai–M.–Wang’24+

Let r ∈ (1,R]. Almost surely, for any [α, β] ⊂ [0, 1], Λr (α, β) is

nonempty if and only if [α, β] ⊂ I (r), and in this case the Hausdorff

dimension of Λr (α, β) satisfies

min
q∈{α,β}

ln r − L∗(q)

q
≤ dimH Λr (α, β) ≤

ln r − L∗(α)

α
.
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Sketch of the proof



Lower bound: the energy method

The energy method

Let θ ≥ 0 and ν be a mass distribution on a metric space (X , d).

Define the θ-potential with respect to ν as

I(θ, ν) :=

∫

X

1

d(x , y)θ
ν(dx)ν(dy).

If there exists I(θ, ν) < ∞, then we have dimHX ≥ θ.
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Lower bound: the energy method

Conditionally on the BRW, we select xn ∈ F, vn ∈ T recursively.

• Set x0 the identity of F and v0 be the root of T .

• Given xj , vj , 1 ≤ j ≤ n − 1, we choose xn uniformly at random from

the set

Ln :=

{
x ∈ F : |x | = ∑n

j=1 mj , xn−1 ≺F x ,

∃u ≻ vn−1, |u| = |vn−1|+ ⌊mn/ηn⌋,V (u) = x

}

• Above, the sequences (mn) ⊂ N and (ηn) are carefully chosen so

that x∞ := lim
n→∞

xn ∈ ∂F belongs to Λr (α).

Let Qα denote the distribution of x∞ given the BRW. By some

computations, to employ the energy method, it suffices to study

I(θ; Q̂α, x∞) ≈
∑

n

e(θ−δ)Mn

n∏

j=1

1

#Ln
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Lower bound: the energy method

• The difficulty in proving that Qα has finite energy is to show that

NT
n,q := #{u ∈ T , |u| = n,V (u) = qn} and

NF
n,q := #{x ∈ Fd , |x | = n, ∃|u| = n/q,V (u) = x}

concentrate around their mean,respectively.

• We prove an exponential decay for sample paths LDP of the RW (we do

NOT get the rate function)

P(∃k ≤ n, |Zk − qk| > δn | |Zn| = qn) ≲ e−C(δ)n.

Then we can consider the truncated version of NT
n,q:

ÑT
n,q,δ := #{|u| = n : V (u) = qn, |V (uk)− qk| ≤ δn,∀ k ≤ n}

We employ truncated second moment method and bootstrap argument,

and finally get P(NT
n,q ≤ [ENT

n,q]
1−ϵ) ≲ e−

√
n.

• Using an inequality for inhomogeneous GW process in Aidekon-Hu-Shi’19

and enhencing the truncation, we get P(NF
n,q ≤ [ENF

n,q]
1−ϵ) ≲ e−

√
n.
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Upper Bound: covering

Λr (α, β) ⊂
⋂

ϵ>0

⋂

k≥1

⋃

m≥k

⋃

α−ϵ<m
n <α+ϵ

⋃

x∈Fm
∃ u∈Tn,V (u)=x

{ω ∈ ∂F : ωm = x} .

the Walk VHn) -> w

(r) is a genealogical line

#An)
-> 2

R

=>·
e S 25



Upper Bound: covering

Thus

Hs
e−k (Λr (α)) ≤

∑
m≥k

e−sm
∑

α−ϵ<m
n
<α+ϵ

∑
x∈Fm

1{∃u∈Tn s.t. V (u)=x}

≤
∑
m≥k

e−sm
∑

α−ϵ<m
n
<α+ϵ

∑
u∈Tn

1{|V (u)|=m}.

By applying the many-to-one formula,

E [Hs
e−k (Λr (α))]

≤
∑

m≥k

e−sm
∑

α−ϵ<m
n <α+ϵ

rnP(|Zn| = m)

=
∑

m≥k

e−sm
∑

α−ϵ<m
n <α+ϵ

e−m ln r−L∗(m/n)
m/n +o(n).

For s > ln r−L∗(α)
α + δ , the series is finite, letting k → ∞ we obtain

Hs (Λr (α)) = 0 a.s. In order words, dimH(Λr (α)) ≤ ln r−L∗(α)
α .

When α = 0 a careful analysis is needed.
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Λr (α, β) with α < β

We believe that the following refined covering captures the correct

dimension

Λr (α, β) ⊂
⋂

q∈[α,β]

⋃
{V (∂T (u)) : u ∈ T , |V (u)|/|u| ∈ [q − ϵ, q + ϵ]} .

We reduce the problem to verify an inequality

P̂(s)

P ′(s)
− s + lnR ≤ 0 for all s ∈ (−∞, lnR).

• I the isotropic setting: the difference between P̂(s) and P(s) is a

constant, and hence P̂ ′(s) = P ′(s). Since P̂(s) is convex and

P̂(lnR) = 0, the inequality follows immediately.

• In anisotropic case, it seems hard (at least for us) to verify this.
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Thanks!
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