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Branching random walk: (V (u), u ∈ T)

Figure: Galton-Watson tree T

▶ Given a supercritical GW tree T
with root 𝜌, (Ae , e ∈ E(T)) are
i.i.d. r.v.’s

▶ [𝜌, u] is the geodesic on the tree
T connecting 𝜌 and u ∈ T.

▶ Let V (u) := ∑
e∈[𝜌,u] Ae.

▶ (V (u), u ∈ T) is the branching
random walk.

▶ For simplicity we may regard T as a binary tree and Ae as i.i.d. 𝒩(0, 1).
▶ This is also the Gaussian free field on the binary tree.
▶ A useful function, log-Laplace transform:

Ψ(𝜃) := logE


∑
|u|=1

e−𝜃V (u)
 ∈ (−∞,+∞],Ψ(0) > 0

In binary Gaussian case: Ψ(𝜃) = log 2 + 𝜃2

2 .
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Additive martingale

▶ E
[∑

|u|=1 e−𝜃V (u)
]
= eΨ(𝜃). binary Gaussian case: Ψ(𝜃) = log 2 + 𝜃2

2 .

▶ Define the additive martingale

Wn(𝜃) =
∑
|u|=n

e−𝜃V (u)−nΨ(𝜃).

Wn(𝜃) is a non-negative martingale, hence has a a.s. limit W∞(𝜃).

Why additive martingale?

▶ Directed polymers on a disordered tree.
▶ Intermediate level set of BRW. Let Zn(A) =

∑
|u|=n 1V (u)∈A. Under mild

conditions of the BRW, with probability 1, for 0 < x < speed of BRW

Zn[xn,∞)
EZn[xn,∞) → W∞(x∗)

where x∗ is the point such that Ψ′(x∗) = x.
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Martingales of branching random walk

E
[∑

|u|=1 e−𝜃V (u)
]
= eΨ(𝜃).

Additive martingale

▶ Additive martingale

Wn(𝜃) =
∑
|u|=n

e−𝜃V (u)−nΨ(𝜃)

converges a.s. to W∞(𝜃) ≥ 0.
▶ (Biggins’77) showed that

P(W∞(𝜃) > 0) > 0

if and only if

𝜃Ψ′(𝜃) < Ψ(𝜃),

and E[W1(𝜃) log+ W1(𝜃)] < ∞.
binary Gaussian case:
|𝜃 | <

√
2 log 2

Derivative martingale

▶ d
d𝜃Wn(𝜃) = Dn(𝜃)

= −
∑
|u|=n

(V (u)+nΨ′(𝜃))e−𝜃V (u)−nΨ(𝜃)

▶ Signed martingale with
E[Dn(𝜃)] = 0.

▶ Convergence criterion?
W.L.O.G., take 𝜃 = 1, assume

Ψ′(1) < Ψ(1) = 0.
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Why derivative martingale

▶ Interpretations:

▶ An precise goal for mathematicians studying GMC:
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Lp convergence of martingales
Very slow regime

ψ(t)

t0 1

Slow regimes

t0

ψ(t)

1

(sub)−diffusive regime

1

κ

ψ(t)

Figure: Ψ(1) = 0 > Ψ′(1)

▶ Wn =
∑

|u|=n e−V (u)

▶ Dn =∑
|u|=n(−V (u) − nΨ′(1))e−V (u)

Assume that there is 𝜅 ∈ (1,∞) s.t.
Ψ(𝜅) = 0, and ∃𝛿 > 0 s.t.

E

©«
∑
|u|=1

(1 + |V (u)|)e−V (u)ª®¬
𝜅+𝛿 < ∞.

Then, ∀p ∈ (0, 𝜅),

Wn
a.s.,Lp

−−−−−→ W∞

Dn
a.s.,Lp

−−−−−→ D∞.

binary Gaussian case: 𝜅 = 2log2/𝜃2.
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Tails of W∞ and D∞

▶ (Liu’2000) showed that there is
constant CW > 0 satisfying

P(W∞ > x) ∼ CW x−𝜅

that as x → ∞, by using that W∞
satisfying some random
difference equation

X d
= AX + B.

▶ Questions: rate of

P(D∞ > x)?

P(D∞ < −x)?
▶ Remark: In the boundary case

(Ψ(1) = Ψ′(1) = 0), D∞ is
non-negative and Madaule’16
proved that P(D∞ > x) ∼ Cst x−1.

Conjecture
(Lacoin-Rhodes-Vargas’22) for binary
Gaussian case

P(D∞(𝜃) < −x) = e−Θ(1)x𝛾

with 𝛾 =
2 log 2
𝜃2 . Partially confirmed by

Bonnefont-Vargas for small 𝜃.

Inspired by Madaule’s method,
Theorem(Chen-de Raphélis-M. 24+)
As x → ∞, conditioned on {W∞ ≥ x},

D∞
x log x

− [Ψ
′(𝜅) −Ψ′(1)
Ψ′(𝜅) ]W∞

x
P−→ 0

and

P(D∞ > x) ∼ CD
(log x)𝜅

x𝜅

with CD = CW

(
Ψ′(𝜅)−Ψ′(1)

Ψ′(𝜅)

)𝜅
.
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Branching random walk in 𝜅-case
Very slow regime

ψ(t)

t0 1

Slow regimes

t0

ψ(t)

1

(sub)−diffusive regime

1

κ

ψ(t)

Figure: Ψ(1) = 0 > Ψ′(1)

Global minimum
▶ (Biggins’1976) showed

inf |u|=n V (u)
n

a.s.−−−→ −Γ.

▶ Γ := inf𝜃>0
Ψ(𝜃)
𝜃 < 0

▶ Then, global minimum is well
defined

M := inf
u∈T

V (u) ∈ R.

Observe M = V (u∗),

W∞ =
∑
|u|=n

e−V (u)W (u)
∞ ≥ e−MW (u∗)

∞
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Figure: Ψ(1) = 0 > Ψ′(1)

Global minimum
▶ (Biggins’1976) showed

inf |u|=n V (u)
n

a.s.−−−→ −Γ.

▶ Γ := inf𝜃>0
Ψ(𝜃)
𝜃 < 0

▶ Then, global minimum is well
defined

M := inf
u∈T

V (u) ∈ R.

Observe M = V (u∗),

W∞ =
∑
|u|=n

e−V (u)W (u)
∞ ≥ e−MW (u∗)

∞



Conditioned on global minimum M ≤ −z = − log x
M = V (u∗) is attained at generation |u∗ |.

W∞ ≍ e−MW (u∗)
∞ , D∞ ≍ e−M[D(u∗)

∞ + (−V (u∗) − |u∗ |Ψ′(1))W (u∗)
∞ ]

Theorem[Chen–de Raphélis–M.”24+]
Under suitable moment condition, as z → ∞,

P

(
(
∑
u∈T

𝛿V (u)−M ,

√
Ψ′(𝜅)

z
(|u∗ | − z

Ψ′(𝜅) ), e
MW∞ ,

eMD∞
|u∗ | , M + z) ∈ ·

���M ≤ −z

)
→ P((ℰ∞ ,G, (Ψ′(𝜅) −Ψ′(1))Z , Z ,−U) ∈ ·)

where (ℰ∞ , Z), U and G are independent, G ∼ N(0, Ψ′′(𝜅)
Ψ′(𝜅)2 ), U ∼ Exp(𝜅)

And E[Z𝜅] < ∞.
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Conditioned on large martingale limite W∞ ≥ x

Theorem[Chen–de Raphélis–M.”24+]
Under suitable moment condition, as x → ∞,

P

(
(
∑
u∈T

𝛿V (u)−M ,
D∞

x log x
,

W∞
x

, M + log x) ∈ ·
���W∞ ≥ x

)
→ P

(
(ℰ̂∞ , eU Ψ′(𝜅) −Ψ′(1)

Ψ′(𝜅) , eU , log Ẑ − U) ∈ ·
)

where E[f (ℰ̂∞ , Ẑ)] = 1
E[Z𝜅]E[Z

𝜅 f (ℰ∞ , Z)].

▶ Conditioned on {W∞ ≥ x},

D∞
x log x

− [Ψ
′(𝜅) −Ψ′(1)
Ψ′(𝜅) ]W∞

x
P−→ 0.

▶ So, P(D∞ ≥ x log x) ≍ P(W∞ ≥ x) ∼ C0x−𝜅 .
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An key estimate of high moments of additive
martingale

Let Mn = inf |u|≤n V (u).
Lemma [Chen-de Raphélis-M. 24+]
For 𝛿 ∈ (0, 1) small we have

E
[
W𝜅+𝛿

n 1{Mn≥−x}
]
≤ Ce𝛿x ∀n ∈ N ∪ {∞}, x ≥ 0,

and

E
[
|Dn |𝜅+𝛿 1{Mn≥−x}

]
≤ C′e𝛿x(1 + x)𝜅+𝛿 ∀n ∈ N ∪ {∞}, x ≥ 0.
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Branching random walk

BRW conditioned on large martingale limits

Level sets of branching Brownian motion



Branching Brownian motion

Figure: BBM

Life time = Exp(1)
Motion = standard Brownian motion
At time t, {Φk(t)}1≤k≤Nt =positions
log-laplace transform: Ψ(𝜃) = 1 + 𝜃2

2 .

Additive martingales:

Wt (𝜃) =
Nt∑

k=1
e−𝜃Φk (t)−tΨ(𝜃)

W∞(𝜃) > 0 iff |𝜃 | <
√

2.

(Liu’2000)

P(W∞(𝜃) ≥ x) ∼ C𝜃x−𝜅𝜃

with 𝜅𝜃 = 2/𝜃2.
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Level sets in branching Brownian motion

Positions at time t, {Φk(t)}1≤k≤Nt

Additive martingales

Wt (𝜃) =
Nt∑

k=1
e−𝜃Φk (t)−tΨ(𝜃)

W∞(𝜃) > 0 iff |𝜃 | <
√

2.

(Liu’2000)

P(W∞(𝜃) ≥ x) ∼ C𝜃x−𝜅𝜃

with 𝜅𝜃 = 2/𝜃2.

Level sets For A ⊂ R,

Zt (A) :=
∑

1≤k≤Nt

1{Φk (t)∈A}

▶ E[Zt [xt ,∞)] ∼ 1√
2𝜋tx

et(1− x2
2 )

▶ (Biggins’92): for 0 < x <
√

2,

Zt [xt , xt + y]
E[Zt [xt ,∞)]

a.s.−−−→ W∞(x)(1−e−xy ).

▶ (Glenz-Kistler-Schmidt’18)

Zt [xt ,∞)
E[Zt [xt ,∞)]

a.s.−−−→ W∞(x).
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Large deviation of level sets
Typically, Zt [xt ,∞) ≈ e(1−

x2
2 )t

√
2𝜋tx

W∞(x).

Theorem(Aïdékon-Hu-Shi’ 2019)
For x > 0 and (1 − x2

2 )+ < a < 1, let I(a, x) = x2

2(1−a) − 1,

P(Zt [xt ,∞) ≥ eat ) = e−I(a,x)t+o(t).

#Project level set LDP



Large deviation of level sets
Typically, Zt [xt ,∞) ≈ e(1−

x2
2 )t

√
2𝜋tx

W∞(x).

Theorem(Aïdékon-Hu-Shi’ 2019)
For x > 0 and (1 − x2

2 )+ < a < 1, let I(a, x) = x2

2(1−a) − 1,

P(Zt [xt ,∞) ≥ eat ) = e−I(a,x)t+o(t).

#Project level set LDP



Large deviation of level sets
Typically, Zt [xt ,∞) ≈ e(1−

x2
2 )t

√
2𝜋tx

W∞(x).

Theorem(Aïdékon-Hu-Shi’ 2019)
For x > 0 and (1 − x2

2 )+ < a < 1,

P(Zt [xt ,∞) ≥ eat ) = e−I(a,x)t+o(t).

Figure: Lower bound by 10 lines + Upper bound by 4 pages



Large deviation of level sets
Typically, Zt [xt ,∞) ≈ e(1−

x2
2 )t

√
2𝜋tx

W∞(x).

Theorem(Aïdékon-Hu-Shi’ 2019)
For x > 0 and (1 − x2

2 )+ < a < 1,

P(Zt [xt ,∞) ≥ eat ) = e−I(a,x)t+o(t).

Figure: Lower bound by 10 lines + Upper bound by 4 pages



Large deviation of level sets
Typically, Zt [xt ,∞) ≈ e(1−

x2
2 )t

√
2𝜋tx

W∞(x).

Theorem(Aïdékon-Hu-Shi’ 2019)
For x > 0 and (1 − x2

2 )+ < a < 1,

P(Zt [xt ,∞) ≥ eat ) = e−I(a,x)t+o(t).

Figure: Lower bound by 10 lines ; Upper bound by 2+4 pages



Large deviation of level sets: upper bound
Typically, Zt [xt ,∞) ≈ e(1−

x2
2 )t

√
2𝜋tx

W∞(x).

AHS’19: For x > 0 and (1 − x2

2 )+ < a < 1, let I(a, x) := x2

2(1−a) − 1. Then

P(Zt [xt ,∞) ≥ eat ) = e−I(a,x)t+o(t).

Can we replace Zt [xt ,∞) by e(1−
x2
2 )tW∞(x) in above inequality? NO!

A Short Proof using martingale tail inequality.
W∞(𝜃) = ∑Nt

k=1 e𝜃Φk (t)−tΨ(𝜃)W (k)
∞ with W (k)

∞ i.i.d. copies of W∞(𝜃).

P(Zt [xt ,∞) ≥ eat ) ≤P
(
W∞(𝜃) ≥ e𝜃xt−tΨ(𝜃)

∑
1≤k≤eat

W (k)
∞

)
≤P

(
W∞(𝜃) ≥ e[𝜃x−Ψ(𝜃)]t 1

2
eat

)
+ P

( ∑
1≤k≤eat

W (k)
∞ <

1
2

eat

)
≲ e−𝜅𝜃[𝜃x−Ψ(𝜃)+a]t + e−𝜖eat︸︷︷︸

Chernorff ′s−bound

Take optimal 𝜃 =
2(1−a)

x ∈ (0,
√

2), then 𝜅𝜃[𝜃x −Ψ(𝜃) + a] = I(a, x).
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Take optimal 𝜃 =
2(1−a)

x ∈ (0,
√

2), then 𝜅𝜃[𝜃x −Ψ(𝜃) + a] = I(a, x).



Precise large deviation for level sets

AHS’19: P(Zt [xt ,∞) ≥ eat ) = e−I(a,x)t+o(t) where I(a, x) = x2

2(1−a) − 1.

Take 𝜃 :=
2(1−a)

x ∈ (0,
√

2), 𝜅𝜃 := 2/𝜃2.

Theorem [Chen–M. ’24+]
For x > 0 and (1 − x2

2 )+ < a < 1,

P(Zt [xt ,∞) ≥ eat ) ∼ Cx ,at−𝜅𝜃/2e−I(a,x)t .

Moreover, for y > 0

P(Zt [xt ,∞) ≥ y√
t
eat ) ∼ Cx ,ay−𝜅𝜃e−I(a,x)t .
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A road to up-to-constant estimate

#Project level set LDP

Observation: BBM hit the green line iff

inf
s>0

min
u∈Ns

(𝜃
2

2
+ 1)s −Φs(u) ≤ −

(
1 − 𝜃2

2

)
pt



A road to up-to-constant estimate

· Decomposition
Ettits)=NsZs(xt-Egls) As 78

are independent given F
= r(E : )

· A inequality : (Xi) independent . X: 30.
&

PLZXiTt))+(i) Comes from
-⑧① &> BBM hit the

line

pt)·((Zt[xt,+o) >Featinfo-(+)p+ +z)F
-

u+

2
Mpt
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Conditioned overlap distribution

▶ Given the BBM up to time t, we choose two individuals u1 , u2

independently and uniformly from x-level set {v ∈ 𝒩t : Φv (t) ≥ xt}.

Theorem [Chen–M. ’24+]
We have the following conditional central limit theorem:(

|u1 ∧ u2 | − pt
c
√

pt
,
Φu1 (|u1 ∧ u2 |) − bpt

c′
√

t
| Zt [xt ,∞) ≥ 1√

t
eat

)
⇒ (G,G)

where G is a standard Gaussian random variable.

As a comparison, without conditioned on large level set size,(
|u1 ∧ u2 |,X|u1∧u2 |(u1)

)
converges in law.
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Conditioned maximum

▶ Let Mt := maxu∈𝒩t Φu(t) be the maximum position.

Theorem [Chen–M. ’24+]
Set

v := bp +
√

2(1 − p)>
√

2
then (

Mt − vt
c′′

√
pt

| Zt [xt ,∞) ≥ 1√
t
eat

)
⇒ G

where G is a standard Gaussian random variable.

As a comparison, without conditioned on large level set size,

Mt −
√

2t + 3
2
√

2
log t converges in law.
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