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Branching random walk: (V(u),u € T)

? > Given a supercritical GW tree T
0 " with root p, (Ae, e € E(T)) are
! iid. r.v’s
s ™
Gl > [p,u] is the geodesic on the tree
; . T connecting p and v € T.

T > Let V(u) := Zeclp,u] Ae-

Figure: Galton-Watson tree T > (V(u),u € T)is the branching
random walk.

> For simplicity we may regard T as a binary tree and Ag asi.i.d. N(0,1).

> This is also the Gaussian free field on the binary tree.

> A useful function, log-Laplace transform:

W(0) :=logE| >\ eV € (~c0, +00], W(0) > 0

|uf=1

In binary Gaussian case: W(0) = log 2 + %2.



Additive martingale

> E [Z|u|:1 e_ev(”)] =e%(0), binary Gaussian case: W(0) = log2 + %2

> Define the additive martingale

Wn(e) - Z e—GV(u)—n\I’(G)_

lul=n

Wi (6) is a non-negative martingale, hence has a a.s. limit Weo ().
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Additive martingale

> E [Z|u|:1 e‘ev(”)] =V, binary Gaussian case: W(0) = log 2 + %2

> Define the additive martingale

Wn(e) - Z e—GV(u)—n‘I’(G)_

lul=n
Wi (6) is a non-negative martingale, hence has a a.s. limit Weo ().

Why additive martingale?

> Directed polymers on a disordered tree.
> Intermediate level set of BRW. Let Z,(A) = 3|, =y Ty/(y)ea. Under mild

conditions of the BRW, with probability 1, for 0 < x < speed of BRW
Zp[xn, 00)

[, Wm *
EZp[xm, ) ()

where x* is the point such that W’ (x*) = x.
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‘ Additive martingale ‘

> Additive martingale

Wh(0) = Z e—QV(u)—n\F(Q)

|lul=n

converges a.s. to Ww(0) > 0.
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P(Ww(6) > 0) >0
if and only if
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Martingales of branching random walk

E [Z|u|=1 e—GV(u)] — (O

‘ Additive martingale ‘

‘ Derivative martingale ‘

> Additive martingale

Wn(e) — Z e—QV(U)—n\I’(Q)

|lul=n

> & Wy(0) = Dy(0)

=" Z (V(u)+n¥’ (0))e~0VW)-n¥(0)

converges a.s. to Woo(6) > 0. =
> (Biggins'77) showed that > Signed martingale with
E[Dn(6)] = 0.
P(We(6) > 0) > 0 » Convergence criterion?
if and only if W.L.O.G,, take 6 = 1, assume
ov’'(0) < W(0), W'(1) < W(1) =0.

and E[W;(60) log, W4(0)] < co.
binary Gaussian case:

18] < V2log?2



Why derivative martingale

Lacoin-Rhodes-Vargas’22:

» A goal from physics which I don’t understand at all:
to construct the path integral

(F)ML,g — / F((p)e—ﬂffM(%g)—SL((O;g)ch(p. 1.11)

Compared to the Liouville path integral which corresponds to 8 = 0, there is a sub-
stantial additional difficulty in defining (1.11) due to the potential term (y¢)e’? in
(1.10). Making sense of (1.11) requires controlling this term from below, a nontrivial
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(F)ML,g — / F((p)e—ﬂﬁM(%g)—SL((O;g)ch(p. 1.11)

Compared to the Liouville path integral which corresponds to 8 = 0, there is a sub-
stantial additional difficulty in defining (1.11) due to the potential term (y¢)e’? in
(1.10). Making sense of (1.11) requires controlling this term from below, a nontrivial

» Actions from physics which I don’t understand at all:

1
S(p,g) = yp /M (|d§a|‘2g + QKoo + 4mpe??) dvg, (1.5)

Sul(p.g) = /M (2n(1 —h)pAg¢ + (%g_h) _ Kg>¢

2
- V4%
+ 1_4V§(y<p)e )dvg, (1.10)



Why derivative martingale

> Interpretations:

in Section 3, but let us just mention that the construction is based on interpreting
1 . . .

e~ ax Jmldolz dve Dy as a GFF measure and expressing the other terms in the actions

as functions of the GFE. With this in mind, the term e”® in the Liouville action (1.5)

gives rise to GMC and the (y@)e?? term in the Mabuchi action (1.10) gives rise to a
derivative (with respect to y) of GMC.
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LP convergence of martingales

> Wp=2=n R4 0)

> D=
Yluj=n(=V(u) = 1%’ (1))e™V®)

w()

Figure: W(1) = 0 > W’(1)



LP convergence of martingales

w()

Figure: W(1) =0 > W’(1)

> Wy = Sjyp eV
» Dn =
Slul=n(=V () - n¥’(1))e™V)

Assume that there is x € (1, ) s.t.
W(x) =0,and 35 > 0 s.t.

K+0
(Z (1+ |V(u)|>e-V(“>) ] <o,

E

luf=1

Then, Vp € (0, x),

binary Gaussian case: k = 2log2/62.
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Tails of W,, and D,

> (Liu"2000) showed that there is
constant Cpy > 0 satisfying

P(Woo > x) ~ Cy x™ ¥

that as x — oo, by using that We
satisfying some random
difference equation

x L Ax +B.
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Conjecture
(Lacoin-Rhodes-Vargas’22) for binary
Gaussian case

> (Liu"2000) showed that there is
constant Cpy > 0 satisfying
P(Woo > X) ~ CW x7 K ]}(Doo(e) < —X) — 678(1))(7;

that as x — oo, by using that We
satisfying some random
difference equation

2 |(c);2g 2. Partially confirmed by

Bonnefont-Vargas for small 0.
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P(Doo < —X)?

> Remark: In the boundary case
(P(1) =¥'(1) =0), Do is
non-negative and Madaule’16
proved that P(D > x) ~ Cstx~'.




Tails of W,, and D,

> (Liu"2000) showed that there is
constant Cpy > 0 satisfying

P(Woo > x) ~ Cy x™ ¥

that as x — oo, by using that We
satisfying some random
difference equation

x £ Ax +B.
» Questions: rate of
P(Deo > X)?
P(Doo < —X)?
> Remark: In the boundary case

(W(1) =W'(1) =0), Deo is
non-negative and Madaule’16

proved that P(Deo > x) ~ Cstx71.

Conjecture
(Lacoin-Rhodes-Vargas’22) for binary
Gaussian case

P(Deo(0) < —x) = e~
£ lgzg = Partially confirmed by
Bonnefont-Vargas for small 0.

with y =

Inspired by Madaule’s method,

Theorem(Chen-de Raphélis-M. 24+)
As x — oo, conditioned on {We > x},

’ _w
Do _[\I](K) \1/(1)]%3)0
X log x W (k) X
and
K
B(Deo > x) ~ Cp 128X

with Cp = Cy (M)K

W (x)



Branching random walk in x-case
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‘ Global minimum ‘

> (Biggins'1976) showed

inf|u|:n V(U) i}
n

w() )

> T = infesg o <0

Figure: W(1) =0 > W’(1)



Branching random walk in x-case

‘ Global minimum ‘

> (Biggins'1976) showed

infly|=n V() as.
_—
n
w(t)
> T:=infgso 22 <0

> Then, global minimum is well
defined

M:=inf V(u) eR.
ueT

Figure: W(1) =0 > W’(1)



Branching random walk in x-case

w()

Figure: W(1) =0 > W’(1)

‘ Global minimum ‘

> (Biggins'1976) showed

inflyj=n V(U) as.
_

n
> T:=infgso 22 <0
> Then, global minimum is well

defined
M:=inf V(u) eR.
ueT
Observe M = V(u*),

Woo - Z e*V(U) Wé:,’) > e*MWg)}*)

lul=n



Conditioned on global minimum M < -z = —log x
M = V(u") is attained at generation |u”|.

Weo = 6 "WYY, Do = e MDY + (—v(w) - W/ ()W)



Conditioned on global minimum M < -z = —log x
M = V(u") is attained at generation |u”|.
Weo = "W, Do = €MDY + (~v(w) - o 1w ()W)

Theorem[Chen—de Raphélis—-M.”24+]

Under suitable moment condition, as z — oo,

W (x " z eMDoo
P ((Z Ov(u)-u- z( )(|U | - \I”(K))' "W, T JM+2) € ~|M < —z)
ueT

= P((Ee, G, (V'(x) -W'(1))Z,Z,-U) € )

. \yl/
where (6w, Z), U and G are independent, G ~ N(0, WS{);

And E[Z¥] < co.

), U ~ Exp(x)



Conditioned on large martingale limite W, > x

Theorem[Chen—de Raphélis—-M.”24+]
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(Z V(u)- M'xlo < 2 M+ logx) € )Ww>x)
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u WV (k) — W' (1)

U A
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Conditioned on large martingale limite W, > x

Theorem[Chen—de Raphélis—-M.”24+]

Under suitable moment condition, as x — oo,

(Z V(u)- M'xlo < 2 M+ logx) € )Ww>x)

ueT
u WV (k) — W' (1)

U A
,e” ,logZ—-U) € -
Vo) e”,log )

- P ((goo,e

where ]E[f(SOO,Z)] E[ZKf(Soo,Z)]

JE[ZK
> Conditioned on {Wy > x},

’ _
Do W(x)-W'(1) %ﬂo

X log x [ W (1) | X

> S0, P(De = xlogx) < P(We = x) ~ Cox~¥.



An key estimate of high moments of additive
martingale

LetM, = inf|u|sn V(u).
Lemma [Chen-de Raphélis-M. 24+]
For 6 € (0, 1) small we have

E [Wr17<+61{1"[,,2—x}] < Ce”™ VYneNU{w}, x>0,
and

E||Dn™ 1 5—x1 | < C'€*(1 + %) V¥n e NU {co},x > 0.
{Mh=—x}
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Branching Brownian motion

e

Figure: BBM

Life time = Exp(1)
Motion = standard Brownian motion
At time t, { D (t)}1<k<n,=positions

. — 02
log-laplace transform: W(0) =1 + 5.



Branching Brownian motion

Additive martingales:

f N
| Wt(e) — e—@(Dk(t)—t\IJ(e)
% MW'\ VYN )

/W«/ ‘~,\_,~\N
< We(0) > 0iff |6] < V2.

Figure: BBM

Life time = Exp(1)
Motion = standard Brownian motion
At time t, { D (t)}1<k<n,=positions

. — 02
log-laplace transform: W(0) =1 + 5.



Branching Brownian motion

Additive martingales:

Nt
Wt(e) — e—@(Dk(t)—t\IJ(e)
2 ‘MW’\W,M RV
T We(0) > 0iff |6] < V2.
Figure: BBM
(Liu’2000)

Life time = Exp(1)
Motion = standard Brownian motion P(We(0) = x) ~ Cogx™*0
At time t, { D (t)}1<k<n,=positions

log-laplace transform: W(0) =1 + %2 with kg = 2/62.



Level sets in branching Brownian motion

Positions at time t, {®k (1) }1<k<n,

Additive martingales ‘

Ni
W;(G) — Z e—@(l)k(t)—t‘ll(e)
k=1

We(6) > 0iff |6] < V2.

(Liu’2000)
P(Weo(0) > X) ~ Cox ™0

with kg = 2/02.
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Positions at time t, {®k (1) }1<k<n, ForA CR,

Additive martingales ‘ Zi(A) = Z V@ (1)eA}
1<k<N;
Ni
Wi(0) = y e 0P(D-1¥(0) > L1 -2
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W (6) > 0iff |6] < V2.

(Liu’2000)
P(Weo(0) > X) ~ Cox ™0

with kg = 2/02.



Level sets in branching Brownian motion

Positions at time t, {®k (1) }1<k<n, ForACR,

Additive martingales ‘ Zi(A) = Z V@ (1)eA}
1<k<N;
Ni
Wi(0) = y e 0P(D-1¥(0) > L1 -2
kZ:; E[Zt[xt, 00)] @Xe 2

> (Biggins'92): for 0 < x < V2,
Weo(8) > 0iff |6] < V2. (Biggins'92): for 0 < x < V2

Zixt, xt +y] as. L
E[Zi[xt, 00)] Weo(x)(1—e™Y).
(Liw2000)
P(Ww(0) > x) ~ Cgx~ 0

with kg = 2/62.



Level sets in branching Brownian motion

Positions at time t, {®k (1) }1<k<n,

Additive martingales ‘

Ni
W;(G) — Z e—@(l)k(t)—t‘ll(e)
k=1

W (6) > 0iff |6] < V2.

(Liu’2000)
P(Weo(0) > X) ~ Cox ™0

with kg = 2/02.

ForA CcR,

Zi(A) = Z 1(Dy(t)eA)
1<k<N;

x2
> Blzilxt, 00)] ~ e
> (Biggins'92): for 0 < x < V2,

Zixt, xt +y] as. L
E[Zi[xt, 00)] Weo (x)(1-e™Y).

> (Glenz-Kistler-Schmidt'18)

Zi[xt, ) as.
Bz, )] el



Large deviation of level sets

Typically, Z;[xt, 00) = ‘/_ Weo (x).
Theorem(Aidékon-Hu-Shi” 2019)

Forx>0and(1—";)+<a<1,let/(a,x): -1,

X2
2(1-a)

P(Z;[xt, o0) > eat) — e—l(a,x)t+o(t)'



Large deviation of level sets
Typically, Z;[xt, 00) = ‘/_ Weo (x).
Theorem(Aidékon-Hu-Shi” 2019)

Forx>0and(1—";)+<a<1,letl(a,x): -1,

X2
2(1-a)

P(Z;[xt, o0) > eat) — e—l(a,x)t+o(t)'

#Project level set LDP

j&” ‘g[@ﬂ)ﬁ b J

0, ot ={be-we)] pt
el e (e g e

& At

- @Yy
e 2(er) =t
[<£t-ot

Fn=1 ’Ww}

|
I
Aag's curve 1 |
|
|

+ J—

f e $02>= %= Jopird




Large deviation of level sets
e(1—§)t
Varix
Theorem(Aidékon-Hu-Shi” 2019)

Forx>0and(1—%2)+<a<1,

Typically, Zt[xt, 00) = Weo ().

P(Zi[xt, ) > e) = g~ @x)t+olt)



Large deviation of level sets

-2

Typically, Zt[xt, co) ~ \/_ Woo(X).
Theorem(Aidékon-Hu-Shi” 2019)

Forx>0and(1—%2)+<a<1,

P(Zi[xt, ) > e) = g~ @x)t+olt)

Bt MW@MW\W Zy. rfm*)
vl

+t Time




Large deviation of level sets
-2
Vo
Theorem(Aidékon-Hu-Shi” 2019)

Forx>0and(1—%2)+<a<1,

Typically, Zt[xt, 00) = E=— W (X).

P(Zi[xt, ) > e) = g~l@x)t+olt)

3.1. Lower bound. The strategy of the lower bound in Theorem 1.1 is as follows. Let
e >0. Let s, = (1”2)[122(7;2(1)”)]73 and y. = 7%« be the maximizer in (3.1) of Lemma 3.1.
Let the BBM reach [y., 0o) at time s, (Whlch, by (1.1), happens with probability at least
exp[—(1 + 5)(2'”3* )] = e~ (H+)I(@2) for 311 sufficiently large ¢); then, after time s,, the
system behaves “normally” in the sense that by (1.2), with probability at least 1 — ¢ for all
sufficiently large ¢, the number of descendants positioned in [zt, 00) at time ¢ of the particle
positioned in [y, co) at time s, is at least exp{(1 —&)[(t — s.) — (;(tt:y;);]} (which is e(1—)at);
note that the condition 0 < %‘& <242 in (1.2) is automatically satisfied. Consequently, for
all sufficiently large ¢,

]P’(N(t, CL‘) > e(l—s)at) > (1 _ 6) e—(1+5)1(a, z)t.

Since € > 0 can be as small as possible, this yields the lower bound in Theorem 1.1. O

Figure: Lower bound by 10 lines ; Upper bound by 2+4 pages



Large deviation of level sets: upper bound
2
e(1—"7)1
Vartx
AHS'19: Forx > 0and (1 - "?Z)J, <a<1,letl(a,x):=

Typically, Zt[xt, 00) = Weo ().

2
ﬁ—LThen

P(Zt[xt, OO) > eat) = efl(a,x)tJro(t).
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AHS'19: Forx > 0and (1 - "?Z)J, <a<1,letl(ax):=

Typically, Zt[xt, 00) = Weo ().

X2
m—1. Then

P(Zt[xt, o0) > eat) = e—l(a,x)t+o(t).

2
_X . . .
Can we replace Z;[xt, o) by e MW (x) in above inequality?
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m—1. Then
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2
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Can we replace Z;[xt, ) by e~ 2 Wy (x) in above inequality? NO!




Large deviation of level sets: upper bound

2>'

el
Typically, Zt[xt, 00) = \/_ Weo ().
AHS'19: Forx > 0and (1 - ?)J, <a<1,letl(a,x):= 2(;(—;) —1. Then

P(Zt[xt, o0) > eat) = e—l(a,x)t+o(t).

2 . . .
Can we replace Z;[xt, ) by e~ 2 Wy (x) in above inequality? NO!

A Short Proof using martingale tail inequality.
Weol(0) = S 02Ot O ") wigh W ii.d. copies of Weo(0).



Large deviation of level sets: upper bound

2>'

Typically, Zt[xt, 00) = Fx Weo (). 2
AHS'19: For x > 0and (1 — ?)J, <a<1,letl(a x):= ﬁ —1. Then
P(Zi[xt, o0) > eat) — efl(a,x)Ho(t)_
NO!

A Short Proof using martingale tail inequality.
Weol(0) = S 02Ot O ") wigh W ii.d. copies of Weo(0).

P(Zi[xt, o) > &) SP(WOO(G)ZeeX[_Nj(Q) > Wéf,‘))

1<k<ed

[ox-w(0)]t 1 at k _ 1 a
SP(Ww(G)Ze 2€ )+P( Z Wy, <€
1<k<edt

< e~ kolOx=¥(0)+alt —ee?

+ e
N——

Chernorff’ s—bound



Large deviation of level sets: upper bound

2>'

Typically, Zt[xt, 00) = Fx Weo (). 2
AHS'19: For x > 0and (1 — ?)J, <a<1,letl(a x):= ﬁ —1. Then
P(Zi[xt, o0) > eat) — efl(a,x)Ho(t)_
NO!

A Short Proof using martingale tail inequality.
Weol(0) = S 02Ot O ") wigh W ii.d. copies of Weo(0).

P(Zi[xt, o) > &) SP(WOO(Q)ZeeX[_Nj(Q) > Wéf,‘))

1<k<ed

[ox-w(0)]t 1 at k _ 1 a
SP(Wm(G)Ze 2€ )+P( Z Wy, <€
1<k<edt

< e~ kolOx=¥(0)+alt —ee?

+ e
N——

Chernorff’ s—bound

Take optimal 6 = 20-2) ¢ (0, V2), then xg[6x — W(6) + a] =I(a, x).
P X



Precise large deviation for level sets

AHS'19: P(Z;[xt, 00) > edl) = e~/@x)t+o(t) where I(a, x) = -1

2(1 a)

Take 6 := @ €(0,V2), Ko = 2/62.



Precise large deviation for level sets

AHS'19: P(Z;[xt, 00) > edl) = e~/@x)t+o(t) where I(a, x) = -1

2(1 a)

Take 6 := @ €(0,V2), Ko = 2/62.

Theorem [Chen-M. 24+]

Forx>0and(1—%2)+<a<1,

P(Zt[xt, c0) > eat) ~ Cxat” K0/2g=I@x)t



Precise large deviation for level sets

AHS'19: P(Z;[xt, 00) > et) = e~ /(@Xt+o(t) where /(a, x) = 1

X2
2(1-a)
Take 6 := @ €(0,V2), Ko = 2/62.

Theorem [Chen-M. 24+]

For x > 0 and (1 —%2)+ <a<i1,
P(Zi[xt, 00) > e3) ~ Cy 5t 0/2eI@N1,
Moreover, fory > 0

P(Zf[Xtr OO) > %eat) ~ Cx,ay_Kee_’(a/X)t.
t



A road to up-to-constant estimate

#Project level set LDP
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A road to up-to-constant estimate
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A road to up-to-constant estimate
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Conditioned overlap distribution

> Given the BBM up to time ¢, we choose two individuals ul,u?

independently and uniformly from x-level set {v € N; : @, (t) > xt}.

Theorem [Chen-M. 24+

We have the following conditional central limit theorem:

lu' Au?] —pt Dyi(ju’ A u?|) - bpt
cvpt ’ o'Vt

where G is a standard Gaussian random variable.

| Zi[xt, 00) > %ea’ = (G,G)



Conditioned overlap distribution

> Given the BBM up to time ¢, we choose two individuals ul,u?

independently and uniformly from x-level set {v € N; : @, (t) > xt}.

Theorem [Chen-M. 24+

We have the following conditional central limit theorem:

(|u1 AU —pt Dyi(lut A u?|) - bpt

cvpt ’ o'Vt

where G is a standard Gaussian random variable.

| Zt[xt, 00) > %eat) = (G, G)

As a comparison, without conditioned on large level set size,

(|u1 A u2|,X|U1 ,\uz|(u1 )) converges in law.



Conditioned maximum

> Let M; := maxyep; Pu(t) be the maximum position.

Theorem [Chen-M. 24+]
Set
v:=bp+V2(1 —p)> V2

then
M; — vt

c” \/B

where G is a standard Gaussian random variable.

1
| Zt[xt, 0) > —e® | = G
Vi



Conditioned maximum

> Let M; := maxyep; Pu(t) be the maximum position.

Theorem [Chen-M. 24+]
Set
v:=bp+V2(1 —p)> V2

then
M; — vt

c” \/B

where G is a standard Gaussian random variable.

1
| Zt[xt, 0) > —e® | = G
Vi

As a comparison, without conditioned on large level set size,

3
M — Vot + — log t converges in law.
2V2
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