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Branching Brownian motion (BBM)

¢ |nitially a particle move as a Brownian
motion with diffusion coefficient 2.

e Atrate (3 it splits into two particles.

® These particles behave independently of
each other, continue move and split,
subject to the same rule.

Trajectories of particles in a BBM.



Maximum of BBM

Let M; := max;<, () Xi(t) be the maximum among all the particles alive at time .

X;
* Biggins'76: lim M: = /2802 as.
—00

A trajectory of M;



Maximum of BBM

Let M; := max;<, () Xi(t) be the maximum among all the particles alive at time .

* Biggins'76: lim M: = /2802 as.
—+00

e Bramson'83: (M; —m; : t > 0) converges
in distributuion, where
my = \/2B02t — —=—logt.

24/2f /02

A trajectory of M;



Maximum of BBM

Let M; := max;<, () Xi(t) be the maximum among all the particles alive at time .

* Biggins'76: lim M= /2807 as.
—00

e Bramson'83: (M; —m; : t > 0) converges
in distributuion, where
my = \/2B02t — —=—logt.
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e Lalley-Sellke'87: The limiting distribution
is a randomly shifted Gumbel distribution:
There exist constant C' and random
variable Z., such that

A trajectory of M;

lim P(M;—m; < z) = E[exp{—CZooe_\/Wx}]_

t—o00



Full extremal value stasistics

Here we describe the result for standard case: 8 = 02 = 1.

¢ Aidékon-Berestycki-Brunet-Shi'13 and
Arguin-Bovier-Kistler'13: The extremal

process Zz‘gn(t) O, (+)—m(t) CONVerges in
law to a certein decorated Poisson point

process (DPPP):

D X t—mt) =
)

i<n(t
DPPP(CZoce™ V% dz, ®V?).

THE EXTREMAL PROCESS OF BBM
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Construction of the DPPP
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e ¢-Cover times of 2D sphere by Brownian motion
(Dembo-Peres-Rosen-Zeitouni'04, Belius-Kistler'17,
Belius-Rosen-Zeitouni'19)

\/a =2V2 (loge1 — iloglog €1> +0p(1)

¢ Characteristic polynomials of random matrices, High-values of the
Riemann-zeta function, - - - - - -



Variants of BBM are also received many attention.

e Variable speed BBM/Generalized random energy model (Fang-Zeitouni'12,
Bovier-Hartung'14, Bovier-Hartung'15, Mallein'15, Maillard-Zeitouni'16,
Bovier-Hartung'20)

e Multitype BBM. (Irreducible case: Biggins'76, Ren-Yang'14,
Hou-Ren-Song'23+)

e d-dimensional BBM (Mallein'15,
Stasinski-Berestycki-Mallein'22,Kim-Lubetzky-Zeitouni'23, Berestycki-
Kim-Lubetzky-Mallein-Zeitouni'21+.)

e Hyperbolic BBM (Lalley-Sellke'97), Branching random walks on hyperbolic
groups (Sidoravicius-Wang-Xiang'22, Dussaule-Wang-Yang'22)



Our model: Two-type BBM

In a two-type reducible branching Brownian
motion:

® Type 1 particles move as Brownian
motion with diffusion coefficient o°.
They split at rate 5 into two children of
type 1; and give brith to type 2 particles
at rate a.
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Our model: Two-type BBM

In a two-type reducible branching Brownian
motion:

® Type 1 particles move as Brownian
motion with diffusion coefficient o°.
They split at rate 5 into two children of
type 1; and give brith to type 2 particles
at rate a.

e Type 2 particles move as standard
Brownian motion and branch at rate 1
into two type 2 children, but can not
produce children of type 1.

 SP 1, Sample. & @.0)-BBM (i)

ply

r
W\(«/% tine
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Questions

Assume that at time 0 we have a type 1 particle starting from the origin. Let
My := max;<p) Xi(t) be its maximum at time ¢.
e Asymptotic behavior of M;. One should except that there are constants C4, Co

depending on $3, o2 such that
M; = C1t — C5 logt + random shifted Gumbel

¢ Asymptotic behavior of extremal particles. One should excepe that the
extremal process converges in law to certain decorated Poisson point process.
n(t)

Z Ox;(t)—Crt+Cylogt = DPPP
=1



Leading order of the maximum

Biggins'12 obtained the spreading speed tlim % (in a more general setting.)
—00

o If (8,02) € ¢ (resp. €rp), type 1
(resp. type 2) particles are
dominating: M,/t — W (resp.
V/2) = speed of BBM with single
type 1 (resp. type 2).
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Leading order of the maximum

Biggins'12 obtained the spreading speed tlim % (in a more general setting.)
— 00

If (3,0%) € ¢ (resp. €pp), type 1
(resp. type 2) particles are
dominating: M,/t — W (resp.
V/2) = speed of BBM with single
type 1 (resp. type 2).

|f(5,0’2) S Cf][[, Mt/t — 0t =
b s > max{\/2302, v/2}.

2(1-02)(B—1
This was called anomalous spreading,
as the speed of the two-type process
is strictly larger than the speed of
both single type particle systems.
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Subleading order of the maximum

Belloum-Mallein'21 investigated the subleading order of the maximum A; and the
limiting extremal processes, when the parameter (3, o2) are interior points of

regions Cg[, Cg]], %[[[.

Belloum'22+ considered a special critical case 8 = 02 = 1.
M.-Ren'23+ investigated the case that (3, o2) lies on the boundries between
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Subleading order of the maximum
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Double jump in the maximum

subleading
coefficient

leading coefficient

5!

Note that a double jump occurs when parameters (3, 02) cross the boundary of the
anomalous spreading region 47;;, and only a single jump occurs when (3, 02) cross

Br 11



Localization of extremal particles
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Localization of extremal particles
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Localization of extremal particles
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Intermediate phases: From 0 to 3

e |dea: Let fi(z) = 2!, # > 0 is the parameter and ¢ > 0 is the time. Then

00 z>1
lim fi(x) =41 r=1
t—o00

0 0<zx<l1

To get a continus phase transation we set parameter = depends on time ¢ and
approach critical point 1 properly: set mfh =1+ % then

Jim fi(zF,) = e which interpolates smoothly between 0, 1, 0o
—00 '
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Intermediate phases: From 0 to 3

e |dea: Let fi(z) = 2!, # > 0 is the parameter and ¢ > 0 is the time. Then

00 z>1
Jim fi(z) = q 1 r=1
0 0<zx<l1

To get a continus phase transation we set parameter = depends on time ¢ and
approach critical point 1 properly: set mfh =1+ % then

thm ft(xt L) = e which interpolates smoothly between 0, 1, oo
—00

® Inspired by Schmidt-Kistler'15, Bovier-Hartung'20 we assume that parameters

(B,0?) depends on the time horizon ¢ and are close to the boundaries Bl
We set . 1 )

Gt g (Bi,07) = (B,0°) € Br.iur (H)
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Intermediate phases: From 0 to 3

1 1 1
—+ =2+ 2 -
Bt * Ut2 th (B, ot)

Theorem[M.-Ren, coming soon]: Define

/ 3 —4min{h,1/2}
mig( t) = 2Bt0152t_ QW logt
min{h, 1/2} 1

Neie

{M; — m,ﬁ:i(t),l?’ﬁt’”tz} converges in law. The
limiting distribution is the same (up to a
constant shift) as the limiting distribution of
centered M; under pBio?, (Similar results
hold for the extremal processes.)

mii(t)—vft— ogt
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Intermediate phases: From 0 to 3

Similar results are ontained for the case 8, + o7 = 2+ 71, (8¢, 07) — (8,0%) €
9311 711 or the case approaching (1,1): é + Ui? =Bi+ol=2+ tih; Br=02=1- tlh;

L —1_ 1
Bt o? =1 th*
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