

Shotgun threshold for sparse Erdős–Rényi graphs

Jian Ding, Yiyang Jiang, <u>Heng Ma</u>

Peking University

Shotgun Assembly Problems

Motivited by DNA shotgun sequencing and Reconstructing big nerual networks in practice, **Mossel-Ross'19** proposed the following framework for shotgun problems.

- <u>Model</u>: \mathcal{G} is a (fixed or random) graph, (possibly with random labeling of the vertices).
- <u>Observation</u>: For each vertex v, its r-neighborhood $N_r(v)$ are given, which is the subgraphs induced by the vertices (forget-ting their names) at distance no greater than r from v.
- Question: Can we reconstruct \mathcal{G} from these *r*-neighborhoods profile $\{N_r(v) : v \in \mathcal{G}\}$?

Prior Works

We are mainly interested in the case the graph \mathcal{G} is a Erdős–Rényi graph $\mathcal{G}_{n,p}$.

Mossel-Ross'19: with probability tending to 1,

- for $\lambda \neq 1$, there is a constant C_{λ} (with explicit formula) such that $\mathcal{G}_{n,\lambda/n}$ is *r*-identifiable for $r \geq C_{\lambda} \log n$.
- $\mathcal{G}_{n,\lambda/n}$ is *r*-nonidentifiable for $r \leq \frac{1}{2(\lambda \log \lambda)} \log n$.

Remark: The assumption $\lambda \neq 1$ comes from the fact that each connected comop-

nent of $\mathcal{G}_{n,\frac{\lambda}{n}}$ has diameter less than $C_{\lambda} \log n$

However by Nachmias-Peres'08: the di-

(Luczak'98, Riordan–Wormald'10).

ameter is of order $n^{1/3}$ for $\lambda = 1$.

Our Results

Theorem. Take $\lambda \in (0, \infty)$. Let \mathbf{T}, \mathbf{T}' be two independent $Poisson(\lambda)$ Galton–Waston trees. Define

 $\gamma_{\lambda} = \mathbf{P} \left(\mathbf{T} \sim \mathbf{T}' \right)$

where $\mathbf{T} \sim \mathbf{T}'$ represent that there is an isomorphism from \mathbf{T} onto \mathbf{T}' keeping the root. Consider the Erdős–Rényi graph $\mathcal{G}\left(n, \frac{\lambda}{n}\right)$. Then the following hold for any $\epsilon_0 > 0$,

- for $r \leq (1 \epsilon_0) \frac{1}{\log(\lambda^2 \gamma_\lambda)^{-1}} \log n$, the shotgun problem is non-identifiable w.h.p. as $n \to \infty$;
- for $r \ge (1 + \epsilon_0) \frac{1}{\log(\lambda^2 \gamma_\lambda)^{-1}} \log n$, the shotgun problem is identifiable w.h.p. as $n \to \infty$.

Remark 1. Indeed there is a power series A with non-negative coefficients such that $\lambda^2 \gamma_{\lambda} = A(\lambda e^{-\lambda})$. **Remark 2.** We also give an algorithm with polynomial running time for reconstructing the original graph.

Our Approach

• Appearance of the blocking subgraph: there is another graph has the same *r*-neighborhoods profile as this blocking subgraph, so one can not reconstruct. The expectated number of our blocking subgraph is roughly $n^2 \times \mathbf{P}(\mathbf{T} \sim_{2r} \mathbf{T}')$. We prove that $\mathbf{P}(\mathbf{T} \sim_{2r} \mathbf{T}') \simeq (\lambda^2 \gamma_{\lambda})^{2r}$. Letting $n^2 \times (\lambda^2 \gamma_{\lambda})^{2r} \ge 1$, we need $r \le \frac{1}{\log((\lambda^2 \gamma_{\lambda})^{-1})} \log n$.

- The reconstructing algorithm for $r \ge (1 + \epsilon_0) \frac{\log n}{\log(\lambda^2 \gamma_\lambda)^{-1}}$. We say a vertex is good if its ρr -beighborhood is unique, where $\rho \in (0, 1)$ depending on ϵ_0 is carefully choosen.
 - 1. For any pair of good vertices, whether there is an edge can be determined by the r-neighborhood for either of them and we then add an edge if there is one.
 - 2. For each good vertex x with unique ρr -neighborhood and each "bad components" contained in $N_r(x)$, we add a copy of it and each such added copy are disjoint.

Further Questions

Our approach depends heavily on the fact that $\mathcal{G}_{n,\lambda/n}$ looks locally like a Poisson GW tree, and hence can not be applied to dense Erdős–Rényi graphs $\mathcal{G}_{n,n-\alpha}$ with $\alpha \in (0,1)$. Results in this case were studied by **Mossel-Ross'19**, **Gaudio-Mossel'20**, **Huang-Tikhomirov'21+**, **Johnston-Kronenberg-Roberts-Scott'22+**; and the case $2/3 < \alpha < 3/4$ remains open.

References

- [1] Elchanan Mossel and Nathan Ross. Shotgun assembly of labeled graphs. *IEEE Transactions on Network Science and Engineering*, 6(2):145–157, 2019.
- [2]Jian Ding, Yiyang Jiang, and Heng Shotgun Ma. threshold for Erdőssparse Rényi graphs. IEEETransactions on Information Theory, To appear.