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Shotgun Assembly Problems

Motivited by DNA shotgun sequencing and Reconstructing big
nerual networks in practice, Mossel-Ross’19 proposed the follow-
ing framework for shotgun problems.

e Model: G is a (fixed or random) graph, (possibly with random
labeling of the vertices).

e Observation: For each vertex v, its r-neighborhood N,.(v) are
given, which is the subgraphs induced by the vertices (forget-
ting their names) at distance no greater than r from wv.

e (Question: Can we reconstruct ¢ from these r-neighborhoods
profile {N,.(v) : v € G}7

Figure 1: A sepical case of shotgun problem for r = 1.

Prior Works

We are mainly interested in the case the
graph G i1s a Erd8s—Rényi graph G, ,.

Mossel-Ross’19: with probability tend-
ing to 1,

e for A ## 1, there is a constant C (with
explicit formula) such that G, /. is
r-identifiable for r > C log n.

® G, n/n 1s r-nonidentifiable for r <

1
2(A—log \) log 1.

Remark: The assumption A # 1 comes
from the fact that each connected comop-
nent of G, » has diameter less than C logn

(Luczak’9n8, Riordan—Wormald’10).

However by Nachmias-Peres’08: the di-
ameter is of order n'/3 for A = 1.

Our Results

Theorem. Take \ € (0,00). Let T, T' be two independent Poisson(\) Galton—Waston trees. Define

n=P(T~T)

where T ~ T represent that there is an isomorphism from T onto T’ keeping the root. Consider the Erdés—Rényi

oraph ¢ (n, %) Then the following hold for any ¢y > 0,

o for r < (1 —¢p) log()\217>\)_1 log n, the shotgun problem is non-identifiable w.h.p. as n — oc;
o for r > (1 + ¢p) log()\217>\)_1 log n, the shotgun problem is identifiable w.h.p. as n — .

Remark 1. Indeed there is a power series A with non-negative coefficients such that A%y, = A(Ae™).
Remark 2. We also give an algorithm with polynomial running time for reconstructing the original graph.

Our Approach

e Appearance of the blocking subgraph: there is another graph has the same r-neighborhoods profile as this
blocking subgraph, so one can not reconstruct. The expectated number of our blocking subgraph is roughly

n? x P(T ~g,. T'). We prove that P(T ~q, T') < (A\27,)*".
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Letting n® x (A%v,)?" > 1, we need r <
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unique, where p € (0,1) depending on ¢ is carefully choosen.

e The reconstructing algorithm for » > (1 + €g)

We say a vertex is good if its pr-beighborhood is

1. For any pair of good vertices, whether there is an edge can be determined by the r-neighborhood for

either of them and we then add an edge if there is one.

2. For each good vertex x with unique pr-neighborhood and each “bad components" contained in N,.(x),

we add a copy of it and each such added copy are disjoint.
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Further Questions

Our approach depends heavily on the fact that G, /, looks locally like a Poisson GW
tree, and hence can not be applied to dense Erdés—Rényi graphs G,, ,,—« with a € (0, 1).
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