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|dentifying graphs

» Reconstruction Conjecture (Kelly, Ulam, Harary’ 57): Any
two graphs on 3 or more vertices that have the same multi-set
of vertex-deleted subgraphs are isomorphic.

LN I\\@i 5

(s) /
deck of
e oC card of G

Figure 1: From Topology and Combinatorics Blog by Max F. Pitz



» Reconstruction Conjecture: Any two graphs on 3 or more
vertices that have the same multi-set of vertex-deleted
subgraphs are isomorphic.
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What if the underlying Graphs are random?
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Bollobs’90: almost all graphs can be reconstructed from any 3
vertex-deleted subgraphs.
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What if the underlying Graphs are random?

Bollobs’90: almost all graphs can be reconstructed from any 3
vertex-deleted subgraphs.

If the graph is random, but we are only given the very local
information of each vertex, can we still identify the graph?



Motivating examples

» DNA shotgun sequencing: Reconstruct a DNA sequence from
“shotgunned stretches of the sequence.

Cloned genomes
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Figure 2: DNA shotgun sequencing by Commins, Toft, and Fares



Motivating examples

» DNA shotgun sequencing: Reconstruct a DNA sequence from
“shotgunned stretches of the sequence.
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» Paninski et al’l5: Reconstruct a big neural network from
very local subnetworks that are observed in experiments.



Mathematical framework by Mossel-Ross'19

» Model: G is a (fixed or random) graph, possibly with random
labeling of the vertices.

» Observation: For each vertex v, we are given its local
r-neighborhood N, (v): the subgraph induced by the vertices
(forgetting their names) at distance no greater than r from wv.
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Mathematical framework by Mossel-Ross'19

» Model: G is a (fixed or random) graph, possibly with random
labeling of the vertices.

» Observation: For each vertex v, we are given its local
r-neighborhood N, (v): the subgraph induced by the vertices
(forgetting their names) at distance no greater than r from wv.

» Question: Can we identify G (up to isomorphism) from the
empirical profile for r-neighborhoods {N, (v) : v € G}?
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Mathematical framework by Mossel-Ross'19

» Model: G is a (fixed or random) graph, possibly with random
labeling of the vertices.

» Observation: For each vertex v, we are given its local
r-neighborhood N, (v): the subgraph induced by the vertices
(forgetting their names) at distance no greater than r from wv.

» Question: Can we identify G (up to isomorphism) from the
empirical profile for r-neighborhoods {N, (v) : v € G}?

» There is a shotgun (assembly) threshold 7. for the radius r

since the monotonicity.
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Mossel-Ross’19:

> Identifiability: Uniqueness of overlaps

r« < min{k : Ni(u) # Ni(v) Vu,v} +1



Mossel-Ross’19:

> Identifiability: Uniqueness of overlaps

r« < min{k : Ni(u) # Ni(v) Vu,v} +1

» Non-identifiability: Blocking configurations.



Labeled lattice models

Graph: d-dimensional box of side length n, denoted as A,,.
Labels: i.i.d. uniform vertex labels from {1,--- ,¢}.

Observations: vertex labeling configurations for each r-box
contained in A,,.
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Observations: vertex labeling configurations for each r-box
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Ding-Liu’22+:
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(1—6)1 logngr*g(l—i—e)l logn when d=1;
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d
log q

logn when d > 2.



Random d-regular graphs

Graph: We randomly and uniformly choose a graph from all the
d-regular graphs with n vertices. Fix d > 3.
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Random d-regular graphs

Graph: We randomly and uniformly choose a graph from all the
d-regular graphs with n vertices. Fix d > 3.

Bollobs’82: For every € > 0, as n — oo, w.h.p.,

logn

» < (1 I
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Indeed, if 7 > (0.5 4 ¢)log,_; n then for all u # v,
(di1(v),...,dr(v)) # (d1(w),...,d(u)) where d;(v) are the
number of nodes at distance 7 from wv.



Random d-regular graphs

Graph: We randomly and uniformly choose a graph from all the
d-regular graphs with n vertices. Fix d > 3.
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Random d-regular graphs

Graph: We randomly and uniformly choose a graph from all the
d-regular graphs with n vertices. Fix d > 3.

Bollobs'82: r, < (1 + 6)%'

Mossel-Sun’15+:

__logn +loglogn
* 2log(d—1)

+0(1)

» (Almost) all 0.51log,_;(n) neighborhoods are trees.

» However, each 0.5(1 + €) log;_(n) neighborhoods is encoded
by a unique cycle structure.



Erdés-Rényi graphs (dense regime)
ErdésRényi graph G,, ,: each pair of vertices is connected with
probability p independently.



Erdés-Rényi graphs (dense regime)
ErdésRényi graph G,, ,: each pair of vertices is connected with
probability p independently.

Mossel-Ross’19, Gaudio-Mossel’20, Huang-Tikhomirov’'21+,
Johnston-Kronenberg-Roberts-Scott’22+:
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Sparse Erdés-Rényi graphs

Now we focus on G,,;, with p = 2 with fixed constant A > 0.
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Sparse Erdés-Rényi graphs

Now we focus on G, ,, with p = % with fixed constant A > 0.

Mossel-Ross’19: For X # 1, there exists a constant C (with
precise formula) such that for every e > 0, w.h.p.

1
—  _logn<7r, <Cylogn.
2(X —log x) Bt =T = A8
» The lower bound also HOLDs for A = 1.
> szﬁwhen)\<1and0,\:ﬁ+m

where \, < 1 satisfies Ae > = Ae ™.

when X > 1,
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Shotgun threshold for G,
Mossel-Ross’19: For G, », 2(/\——i)g/\) logn < r, < Cylogn.

Theorem (Ding-Jiang-M. 22+)

Fix A € (0,00). Let vy =P (T ~ T'), where T, T are two
independent PGW(\) trees. Let G ~ G (n, %) Then for any € > 0,
w.h.p.,
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» Indeed there is a power series A with non-negative coefficients
such that A2y, = A(Ae ™).



Shotgun threshold for G,
Mossel-Ross’19: For G, », 2(/\——%0g/\) logn < r, < Cylogn.

Theorem (Ding-Jiang-M. 22+)

Fix A € (0,00). Let vy =P (T ~ T'), where T, T are two
independent PGW(\) trees. Let G ~ G (n, %) Then for any € > 0,
w.h.p.,

1
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log (A%27)) !
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» Indeed there is a power series A with non-negative coefficients
such that A2y, = A(Xe™).

> We also give an algorithm with polynomial running time for
reconstructing the original graph.



Non-identifiability: blocking configuration
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Figure 3: Blocking subgraph by Mossel and Ross
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Figure 3: Blocking subgraph by Mossel and Ross

Letting the expactation of the number of such blocking subgraphs
n? x (Ae ™) x (Ae™)?" > 1, we have r < m log n.



Non-identifiability: blocking configuration

Key: The middle part (2r levels) are isomorphic; in addition
removing red vertices results in small bushes
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Figure 4: Improved blocking subgraph



Non-identifiability: blocking configuration
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The expectation of the number of our blocking configuration is
n? x P(T ~g, T').



The expectation of the number of our blocking configuration is
n? x P(T ~g, T').

Lemma (Ding-Jiang-M. 22+)
P(T ~2r T/) = Oé?\r where oy 1= )\27)\ < 1.

Letting n? x o&’" > 1, we need r < .

1
P log n.
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Brief discussion on identifiability

Mossel-Ross’19: For A # 1, . < C) logn.

» uczak’98, Riordan-Wormald’10: each connected component
has diameter less than C) logn when X\ # 1.

» Nachmias-Peres’'08: the diameter is of order n'/3 for A = 1.

E If Sy == fu: dimwy) = rj:yﬁ
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Our Intuitions

Our key intuition is to recover bad components from good vertices.

P jmﬂ writiees 0 - pad vrtices



Brief discussion on identifiability
1+e
log(agl)
Key observation 1: Vertices which have two disjoint r-arms in

their r-neighborhood are good:

Assume that r =

logn.

> “Essentially”, their (r — 1)-neighborhood is unique, since
n? x a3" < 1.




Brief discussion on identifiability

Key observation 1: Vertices which have two disjoint r-arms in
their r-neighborhood are good.

» Vertices without two r-arms can be identified from the
r-neighborhood of some good vertex (or it is in a small
component).




Brief discussion on identifiability

Caveat: we have ignored cycles in the graph in our analysis
above, and this incurs serious challenge.

Key observation 2: Vertex which is contained by some cycle but
doesn’t have unique (r — 1) neighborhoods are very rare.




Thanks for your attention!



