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Identifying graphs

◮ Reconstruction Conjecture (Kelly, Ulam, Harary’ 57): Any
two graphs on 3 or more vertices that have the same multi-set
of vertex-deleted subgraphs are isomorphic.

Figure 1: From Topology and Combinatorics Blog by Max F. Pitz
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What if the underlying Graphs are random?

Bollobs’90: almost all graphs can be reconstructed from any 3
vertex-deleted subgraphs.

If the graph is random, but we are only given the very local
information of each vertex, can we still identify the graph?



Motivating examples

◮ DNA shotgun sequencing: Reconstruct a DNA sequence from
“shotgunned stretches of the sequence.

Figure 2: DNA shotgun sequencing by Commins, Toft, and Fares
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◮ DNA shotgun sequencing: Reconstruct a DNA sequence from
“shotgunned stretches of the sequence.

Figure 2: DNA shotgun sequencing by Commins, Toft, and Fares

◮ Paninski et al’15: Reconstruct a big neural network from
very local subnetworks that are observed in experiments.



Mathematical framework by Mossel-Ross’19

◮ Model: G is a (fixed or random) graph, possibly with random
labeling of the vertices.

◮ Observation: For each vertex v, we are given its local
r-neighborhood Nr(v): the subgraph induced by the vertices
(forgetting their names) at distance no greater than r from v.
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◮ Model: G is a (fixed or random) graph, possibly with random
labeling of the vertices.

◮ Observation: For each vertex v, we are given its local
r-neighborhood Nr(v): the subgraph induced by the vertices
(forgetting their names) at distance no greater than r from v.

◮ Question: Can we identify G (up to isomorphism) from the
empirical profile for r-neighborhoods {Nr(v) : v ∈ G}?

◮ There is a shotgun (assembly) threshold r∗ for the radius r
since the monotonicity.



Mossel-Ross’19:

◮ Identifiability: Uniqueness of overlaps

r∗ ≤ min{k : Nk(u) ∕= Nk(v) ∀u, v}+ 1



Mossel-Ross’19:

◮ Identifiability: Uniqueness of overlaps

r∗ ≤ min{k : Nk(u) ∕= Nk(v) ∀u, v}+ 1

◮ Non-identifiability: Blocking configurations.



Labeled lattice models

Graph: d-dimensional box of side length n, denoted as Λn.

Labels: i.i.d. uniform vertex labels from {1, · · · , q}.
Observations: vertex labeling configurations for each r-box
contained in Λn.
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contained in Λn.
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2d

log q
log n .

Ding-Liu’22+:

(1− 󰂃)
2

log q
log n ≤ r∗ ≤ (1 + 󰂃)

2

log q
log n when d = 1;

(1− 󰂃)
d

log q
log n ≤ (r∗)

d ≤ (1 + 󰂃)
d

log q
log n when d ≥ 2.
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Bollobs’82: For every 󰂃 > 0, as n → ∞, w.h.p.,

r∗ ≤ (1 + 󰂃)
log n
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Indeed, if r ≥ (0.5 + ε) logd−1 n then for all u ∕= v,
(d1(v), . . . , dr(v)) ∕= (d1(u), . . . , dr(u)) where di(v) are the
number of nodes at distance i from v.
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Random d-regular graphs

Graph: We randomly and uniformly choose a graph from all the
d-regular graphs with n vertices. Fix d ≥ 3.

Bollobs’82: r∗ ≤ (1 + 󰂃) logn
2 log(d−1) .

Mossel-Sun’15+:

r∗ =
log n+ log log n

2 log(d− 1)
+O(1)

◮ (Almost) all 0.5 logd−1(n) neighborhoods are trees.

◮ However, each 0.5(1 + 󰂃) logd−1(n) neighborhoods is encoded
by a unique cycle structure.



Erdős-Rényi graphs (dense regime)
ErdősRényi graph Gn,p: each pair of vertices is connected with
probability p independently.



Erdős-Rényi graphs (dense regime)
ErdősRényi graph Gn,p: each pair of vertices is connected with
probability p independently.

Mossel-Ross’19, Gaudio-Mossel’20, Huang-Tikhomirov’21+,
Johnston-Kronenberg-Roberts-Scott’22+:
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Sparse Erdős-Rényi graphs

Now we focus on Gn,p with p = λ
n with fixed constant λ > 0.

Mossel-Ross’19: For λ ∕= 1, there exists a constant Cλ (with
precise formula) such that for every 󰂃 > 0, w.h.p.

1

2(λ− log λ)
log n ≤ r∗ ≤ Cλ log n .

◮ The lower bound also HOLDs for λ = 1.
◮ Cλ = 1

log(λ−1)
when λ < 1 and Cλ = 1

log(λ)
+ 2

log(1/λ∗)
when λ > 1,

where λ∗ < 1 satisfies λe−λ = λ∗e
−λ∗ .



Shotgun threshold for Gn,λn

Mossel-Ross’19: For Gn,λ
n
, 1
2(λ−log λ) log n ≤ r∗ ≤ Cλ log n.



Shotgun threshold for Gn,λn

Mossel-Ross’19: For Gn,λ
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Theorem (Ding-Jiang-M. 22+)

Fix λ ∈ (0,∞). Let γλ = P (T ∼ T′), where T,T′ are two
independent PGW(λ) trees. Let G ∼ G

󰀃
n, λn

󰀄
. Then for any 󰂃 > 0,

w.h.p.,

(1− 󰂃)
1

log (λ2γλ)
−1 log n ≤ r∗ ≤ (1 + 󰂃)

1

log (λ2γλ)
−1 log n .



Shotgun threshold for Gn,λn

Mossel-Ross’19: For Gn,λ
n
, 1
2(λ−log λ) log n ≤ r∗ ≤ Cλ log n.

Theorem (Ding-Jiang-M. 22+)

Fix λ ∈ (0,∞). Let γλ = P (T ∼ T′), where T,T′ are two
independent PGW(λ) trees. Let G ∼ G

󰀃
n, λn

󰀄
. Then for any 󰂃 > 0,

w.h.p.,

(1− 󰂃)
1

log (λ2γλ)
−1 log n ≤ r∗ ≤ (1 + 󰂃)

1

log (λ2γλ)
−1 log n .

◮ Indeed there is a power series A with non-negative coefficients
such that λ2γλ = A(λe−λ).
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Theorem (Ding-Jiang-M. 22+)

Fix λ ∈ (0,∞). Let γλ = P (T ∼ T′), where T,T′ are two
independent PGW(λ) trees. Let G ∼ G

󰀃
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. Then for any 󰂃 > 0,

w.h.p.,

(1− 󰂃)
1

log (λ2γλ)
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◮ Indeed there is a power series A with non-negative coefficients
such that λ2γλ = A(λe−λ).

◮ We also give an algorithm with polynomial running time for
reconstructing the original graph.



Non-identifiability: blocking configuration

Figure 3: Blocking subgraph by Mossel and Ross



Non-identifiability: blocking configuration

Figure 3: Blocking subgraph by Mossel and Ross

Letting the expactation of the number of such blocking subgraphs
n2 × (λe−λ)2r × (λe−λ)2r ≥ 1, we have r ≤ 1

2(λ−log λ) log n.



Non-identifiability: blocking configuration

Key: The middle part (2r levels) are isomorphic; in addition
removing red vertices results in small bushes

Figure 4: Improved blocking subgraph



Non-identifiability: blocking configuration



The expectation of the number of our blocking configuration is
n2 × P(T ∼2r T

′).



The expectation of the number of our blocking configuration is
n2 × P(T ∼2r T

′).

Lemma (Ding-Jiang-M. 22+)

P(T ∼2r T
′) ≍ α2r

λ where αλ := λ2γλ < 1.

Letting n2 × α2r
λ ≥ 1, we need r ≤ 1

log(α−1
λ )

log n.
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Brief discussion on identifiability

Mossel-Ross’19: For λ ∕= 1, r∗ ≤ Cλ log n.

◮ uczak’98, Riordan-Wormald’10: each connected component
has diameter less than Cλ log n when λ ∕= 1.

◮ Nachmias-Peres’08: the diameter is of order n1/3 for λ = 1.



Our Intuitions

Our key intuition is to recover bad components from good vertices.



Brief discussion on identifiability

Assume that r = 1+󰂃
log(α−1

λ )
log n.

Key observation 1: Vertices which have two disjoint r-arms in
their r-neighborhood are good:

◮ “Essentially”, their (r − 1)-neighborhood is unique, since
n2 × α2r

λ ≪ 1.



Brief discussion on identifiability

Key observation 1: Vertices which have two disjoint r-arms in
their r-neighborhood are good.

◮ Vertices without two r-arms can be identified from the
r-neighborhood of some good vertex (or it is in a small
component).
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Brief discussion on identifiability

Caveat: we have ignored cycles in the graph in our analysis
above, and this incurs serious challenge.

Key observation 2: Vertex which is contained by some cycle but
doesn’t have unique (r − 1) neighborhoods are very rare.



Thanks for your attention!


